If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+8w=18
We move all terms to the left:
w^2+8w-(18)=0
a = 1; b = 8; c = -18;
Δ = b2-4ac
Δ = 82-4·1·(-18)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{34}}{2*1}=\frac{-8-2\sqrt{34}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{34}}{2*1}=\frac{-8+2\sqrt{34}}{2} $
| 6q+17=8q-13 | | 3z-(9z+7)=-22 | | 7h+h-8h+5h=15 | | -n=-2n-17 | | 14x+10=8x+7+5x+14 | | 3/x=0.1/2 | | -10+9m=2m+9m+8 | | 17=-2+x | | 5(4k-6)=6(2k+4) | | 11j+3j+4j-17j+j=2 | | 9g+6=-10+5g | | 14x+4+55+51=180 | | -25x+5=93 | | P=-0.15x+2 | | 16h+18=3h-8+15h | | -6.5-2v=3.6 | | 6b2+-13b+6=0 | | 12n=-4 | | 3/5(a)+3/5(5.25)=7.35 | | 52+20x+8=180 | | 9d-4d-5d+d-1=18 | | ?x9=81 | | 20-5n=-2n-19 | | 3y+24+88=180 | | 11x+12=6x+9+4x+14 | | 2m−3=13 | | 5t-3/4=t/2 | | 3j=8+5j | | /2x=-20–3-4x+10 | | 16t+5=-19+10t | | -13s+16s+-4s=-19 | | 2/3x+1/4x=11 |